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Geodesics for Photons, Particles, and Tachyons in 
a Cosmological Model 
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We find geodesics in a flat universe obeying a perfect gas law for the equation 
of state, by means of a constant deceleration model. Inflationary and power-law 
cases are considered. 

1. INTRODUCTION 

The most recently study of geodesics in the isotropic universe was 
undertaken by Chaliassos (1987), who studied the analytic form of the geodes- 
ics in the Robertson-Walker metric, and also found the solutions for the 
closed, flat, and open Friedmann models, in the dust and radiation phases, 
with a null cosmological constant. In this note we consider geodesics in the 
inflationary phase, along with the solution for the general case of a perfect 
gas equation of state, 

p = ~/p (~/= const) (1) 

where p and p stand for cosmic pressure and rest-energy density, respectively. 
Such a law occurs in cosmological flat models when one selects constant 

deceleration parameter models, 

RR 
- m - 1 = const (2) q =  R2 

where R ( t )  is the scale factor in the Robertson-Walker metric, 

d s  2 = d t  2 - R 2 ( t ) [ d r  2 + r2(d02 + sin20 d~b2)] (3) 

l Group of Cosmology and Gravitation, Division of Astrophysics, INPE (National Institute of 
Space Research), CEP 12201-970, SAo Jos6 dos Campos, SP, Brazil; Now at Dept. of Physics, 
Instituto Tecnol6gico de Aeronantica (ITA), SAo Jos6 Dos Campos, SP, Brazil. 

1249 

0020-7748/97/0500-1249512.50/0 �9 1997 Plenum Publishing Corporation 



1250 Berman 

In Section 2 we study null geodesics,  in Section 3, particles and tachyons.  

2. N U L L  G E O D E S I C S  

The  general equation for  null geodesics  is (Chaliassos,  1987) 

r = _ + f ~  

For  the inflationary phase (m = 0), 

R = Ro ent 

(4) 

(Ro, H constants)  (5a) 

~/ = - 1 (5b) 

and  

+ e - H i  

r = + ro (ro = const) (6) 
- R o H  

We interpret this result as meaning  that a photon in the inflationary phase 
will be approximate ly  comoving ,  and 

r = r0 (7) 

In other words, photons are "localized."  
Let  us now consider  the m :~ 0 cases, where  a power  law applies for  

R(t )  (Berman,  1983; Berman  and Gomide ,  1988) 

R( t )  = ( m D t )  um (8a) 

= �89 - 3)  (8b)  

From (4), we find, for  null geodesics,  if  m :/: 1, 

[(:) ]-' r = +-- 1 --  ( m D )  llm t I - l /m + ro (9) 

This  is a monotonic  increasing function of  t for  m > 1. When  t = 0, r = 
ro; for  t --> 0% we have r --> o% as expected.  For  m < 1, we have a photon 
at infinity when t = 0, which at t --> oo gives r --> ro (comoving  photon).  

For  the case m = 1, we find 

r = _+(D) -v2 In t + r0 (10) 

In order  to have a meaningful  result, in this case we must  choose the plus 
sign, and then, when t ---> o% r ---> oo. We have  to adjust r o so that for  t --> 
10 -43 sec, r ---> 0 (comoving) .  For  t < 10 -43 sec, our  model  does not apply, 
because we would be out o f  the classical domain.  
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3. G E O D E S I C S  F O R  P A R T I C L E S  AND T A C H Y O N S  IN A 
FLAT U N I V E R S E  

Our solution considers the case where particles and tachyons live in a 
p = o~p universe (r = const). This happens automatically if we adopt the 
hypothesis stated in Sect ion 2 for fiat universes with 

2m - 3 
et - - -  (11) 

3 

When m = 3/2 we recover the dust solution, and for m = 2 we get the 
radiation case, in flat universes. We can see that we are solving for a general 
perfect gas equation of state, because, by varying m, we vary ot in (6). 

Let us first look at the inflationary case, given by m = 0. The geodesic 
is given by 

r = + Roen,{ 1 + kot'2Roe2~ in (12) 

where or' = m'2c21p~ = const. Here m '  is the rest-mass and Pr the radial 
momentum. When we plug into (8) the reasonably widely accepted numerical 
data for the D, t range, and suppose R0 to be of  order 10 -33 c m  (Planck's 
length), we verify that the integral reduces to the corresponding null geo- 
desic case: 

r ~-- +-I R~ dt -~ const ("localized",  or comoving particle.) 

(13) 

where K = ot'2D 2. 
When m = 1 and h = - 1  (tachyons), 

1 
r =  + p i n  t 

(15) 

(16) 

Let us now consider the m :# 0 cases. We have 

I dt  (14) 
r = +-- (mDt)um{ 1 + kot,2(mDt)21m}ll 2 

Two cases are amendable to analytic solution. When m = 1 and h = 1 
(particle), 
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In this case, it is evident that t has a maximum possible value, tmax = K -m/2- 
Two other cases (m = 2) have parametric solutions that were given by 

Chaliassos in analytic form: For h = 1, m = 2, 

+ 1  
r = _ - -  {oL'y + ~/1 + ot'Zy} + const (17) 

OLP 

F o r k  = - l , m = 2 ,  

where 

d y  = R -1 d t  (18) 

I 
r = -ct'+-- arcsin(ct'y) (19) 

It is expected that other cases, when treated numerically, yield similar results. 
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